NEU Theory

NEU Theory

The Nature of Physical Reality

Neu Theory Standards & Values

Symbols & Abbreviations

Where not noted standard chemical symbols and abbreviations are used.

a = acceleration (m/s2)
A = area in square meters (m2)
α = alpha emission (helium-4 nuclide) ( 2D)
β- = electron emission
β+ = positron emission
D = deuteron (hydrogen-2 nuclide)
e- = electron
E.C. = electron capture
eV = electron volts (1.0 eV approx equals 0.000 000 001 neu spin or rise ≈ one billionth neu)
g = acceleration due to rise (g-rise)
G = gravitational constant (used by Neu Theory as the rise constant)
H = hydrogen
He3 = helion (helium-3 nuclide)
J = joules of energy (1.0 J approx equals 6,642,975,021 neu spin or rise ≈ 6.6 trillion neu)
ρ = density (kg/m3) (absolute density, ρabs = 1.0 = 6.693 034 x 1017 kg/m3)
p+ = proton
kg = mass in kilograms
m = distance in meters
n0 = neutron
qs = quantum spin
s = time in seconds
T = triton (hydrogen-3 nuclide)
Hz = cycles per second
V = volume in cubic meters (m3)

Symbolic Use of Color in Neu Theory

white – a place without matter or energy (the electron hollow and beyond the zome)
black – a place with absolute density spinrise matter (core [1], membrane [2]); a spinfield hollow indicator symbol (dashed black circle around a g-rising body [5])
gray – a place with variable density spinrise matter (plasm shell [3a])
green – a deformable magnetic field [4] around spinning matter (neutron core, proton core, electron membrane, positron, other transient “exotic” particles)
red – a place with de-linked spin energy (electric charge shells [6+] & [6-], photon bubbles [11]); the electric field potential energy indicator symbols (dashed red circles [7+] & [7-] and the electric hollow [10]; imaginary electric “fiber bundle” lines with “+”, “-” symbols @ broken ends)
blue – a place with de-linked rise movement/energy: zome [8] shaded light blue color; “straight arrow” vector motion kinetic energy of matter [9], and “bent arrow” vector motion kinetic energy of the electron orbitals within atoms [9], shaded solid blue color; the cosmic openhollow boundary indicator symbol (solid blue circle with outside white and the inside shaded light blue);

Measurement

Measurement is the process of obtaining the magnitude of a quantity relative to a specified unit of measurement.
The neu physical quantity is a natural unit of counting and measurement.

Neu Theory Basic Tools & Standards of Measurement

QuantityToolUnitAbbrObject MeasuredNeu Standard
size (l)flex tapespin metermmatter & lightproton charge radius
distance (d)rigid rodrise metermspace between matterzome speed
(z = c)
time (t)the clocksecondsmatter, space & lightquantum spin (qs/s)
mass (m)scale balancekilogramkgmatter & spaceneutron 3 forms = 1.0 amu
acceleration (a)the earthG*gmatter & spaceproton & zome rise

*Acceleration due to Rise g = Gm/r2 , G = 6.67384×10-11m3/kg/s2

Neu theory uses two different tools in the measurement of linear physical extent:

  • To measure size: specifically surface closure area and displacement volume – we use the spin meter length as a flexible tape measure that can be bent around a matter object to measure its circumference relative to some standard. Size is always based on a finite closed measurement. The spin meter is a “level” measurement.
  • To measure distance or space: by which we are measuring free rise movement/energy – we use the rise meter length as a straight rod that cannot be bent. Distance, or the amount of space between objects, is always a finite open measurement between two or more specified surfaces of closure. The rise meter is a “plumb” measurement.

Both meters are accelerating with time. The acceleration of spin makes the closed spin meter smaller with time. The acceleration of rise makes the straight rise meter larger with time. The synchronous acceleration of the two meters with time continuously balance each other, such that when compared to each other, both meters will always appear the same.

Matter is a perpetual physical balance between two equal linked absolute movement/energies.

Any system of measurement may be used, we just need to be clear as to what is being measured and the unit being used.

Neu Theory uses basic Euclidean spherical geometry for its measurements.

Geometric Relationships

Length (l)Area (A)(l2)Volume (V)(l3)Radius (l/2π = r)Diameter (l/π)Circumference (l)
1/31/91/27   
1/21/41/8   
1110.159 l0.318 l1.000 l
248   
3927   

Spherical Formulas

spherical radius (l/2π)r
spherical cross section diameter (l/π)2r
spherical circumference (l)2πr
spherical great circle cross section area (A)πr2
spherical surface area (A)4πr2
spherical volume (V)4/3πr3
spherical volume to spherical area3√36πV2
spherical area to radius√A/4π
spherical volume to radius

3√3V/4π

Other Formulas

acceleration due to rise (g)Gm/r2
Schwarzschild radius (rs)2Gm/c2
photon sphere (1.5 rs)3Gm/c2
escape velocity (ve)√2Gm/r
orbital velocity (vo)√Gm/r
mean orbital speed (vo)2πa/T

a = length of semimajor axis, c = speed of light @ 299 792 458 m/s, G = gravitational constant @ 6.67384×10-11 m3/kg/s2, T = orbital period

SI Fundamental Units of Measurement

Time: seconds (s)
Space: meters (m)
Mass: kilograms (kg)
Temperature: degrees kelvin (K) or °C (Celsius)
Electrical current: ampere (A)
Luminosity: candela (l)
Amount of matter: mole

angle: (θ) ° (degree), rad (radian), or rev (revolution), 360° = 2π rad = 1 rev
cycles: (n) cyc (cycles)

speed of light: 299 792 458 m/s
one year time: in seconds 31,557,600 s
light year: (distance in meters @ speed of light) 9.46 ×1015 m

Neu Theory Fundamental Units of Measurement

Neu Theory uses the accepted SI values with one exception. The exception is the numerical value of the mole or amount of matter. This is required because Neu Theory uses a different atomic mass unit (amu) than current science. The neu mole is approximately equal to 5.971×1023.

The SI amu is based on 1/12th of the mass of a C-12 atom, approximately equal to 1.660 538 921 x 10-27 kg[1]. With this standard the relative mass of a neutron is equal to 1.008 665 amu.

Neu Theory by definition sets the neutron equal to one amu. The Neu Theory amu is called the neu (neutron equivalent unit) and its measured value is approximately equal to 1.674 929 351 x 10-27 kg[1] of mass.

In principle, the neu is an absolute unit – a precise invariant quantity – numerically equal to exactly one unit of mass. In practice, the value of the neu in kilograms can only be approximated, because the mass of the neutron is so small, and the kilogram is based on a much larger physical artifact.

The neu is slightly larger than the C-12 amu representing an increase in relative mass value of approximately 0.8665 %. The atomic masses of the natural isotopes are now compared to the neu quantity with a corresponding decrease in relative mass value of approximately 0.8595 % as compared to the C-12 value. The absolute neu value of C-12 is 11.896 914 instead of 12.000000. The Neu Mass & Charge Radii Table gives the C-12 and the neu mass value of selected isotopes.

It should be emphasized that actual measured mass of atoms in kilograms and the equivalent energy value in joules, electron volts, or any other unit, is not changed in the slightest by using a neutron amu. The numerically smaller neu mass value of an isotope is exactly balanced by the numerically larger neu mass unit giving us precisely the same quantity of mass expressed in kilograms, that we had before. 

The reason the neu is so useful is that it allows mass and energy to be counted with the same numeric scale, and allows us in principle to estimate the ratio of matter to energy in the cosmos.

REFERENCES

[1] NIST
[2] Nature Volume: 466, Pages: 213–216 Date published: (08 July 2010); Pohl et al
[3] NASA
[4] “elements, abundance of.” A Dictionary of Astronomy. 1997. Encyclopedia.com. 1 Jan. 2012
[5] Wikipedia

QUANTUM NEU VALUES

quantum spin energy: (1.000 000 neu spin) 939.565 379 MeV
quantum rise energy: (1.000 000 neu rise) 1.505 349 631 x 10-10 J
quantum mass: (1.000 000 neu mass) 1.674 929 351 x 10-27 kg
quantum number: (neu mole) (neu number per kilogram) 5.970 401 076 x 1026
quantum volume: (1.000 000 neu @ absolute density) 2.502 50 x 10-45 m3
quantum radius: (1.000 000 neu volume @ max density) 0.84222 x 10-15 m
absolute density: (proton mass/proton volume as measured) 6.693 034 x 1017 kg/m3
quantum g-rise: (1.000 000 neu volume @ max density) ~1.78×10-7 m/s2
quantum time: (number of quantum spins per second) [specific to quantum object]
acceleration of c: (uniform acceleration a of the speed of absolute movement – fraction of c/s2) [to be determined]

Note: The acceleration of c cannot be measured by tools made of matter as they also accelerate, but it can be measured by using a tool that does not accelerate – namely the redshift of photons.

Astrophysical Quantities

earth radius: (mean) 6.371 x 106 m [5]
earth mass: in kilograms 5.9736 x 1024 kg [5]
earth volume: (@ mean radius 1.08 x 1021 m3
earth density: (average) 5514 kg/m3
earth g-rise: (equatorial) ~9.78 m/s2
earth surface orbital velocity: 9.71 km/s
earth escape velocity: 11.186 km/s
earth mass: in neu’s 3.5664 x 1051 neu
earth n-e ratio: 0.52:0.48 (32.1 % iron, 30.1 % oxygen, 15.1 % silicon, 13.9 % magnesium+)[5]

moon radius: (mean) 1.737 x 106 m [5]
moon mass: in kilograms 7.3477 x 1022 kg [5]
moon mass: in neu’s 4.3868 x 1049

Jupiter radius: (mean) 69.911 x 106 m [5]
Jupiter mass: in kilograms 1.8986 x 1027 kg [5]
Jupiter mass: in neu’s 1.1335 x 1054

solar radius: (equatorial) 6.955 x 108 m [5]
solar mass: in kilograms 1.9891 x 1030 kg [5]
solar mass: in neu’s 1.1875 x 1057
solar n-e ratio: 0.13:0.87 (74.9 % hydrogen, 23.8 % helium, 1.3 % other elements)[5]

milky way galaxy diameter: (100,000 ly) 9.46 ×1020 m
milky way galaxy thickness: (1,000 ly) 9.46 ×1018 m
milky way galaxy mass: ( 8.2 x 1011 solar masses) 1.63 x 1042 kg
milky way galaxy mass: in neu’s 9.84 x 1068

average galaxy mass: (@ 0.5 x 1011 solar masses) 1.0 x 1041 kg
average galaxy mass: in neu’s 6.0 x 1067

try cosmic neu number: N (@ 2.0 x 1011 galaxies) 1.2 x 1079
try cosmic neu number: N (@ 5.0 x 1011 galaxies) 3.0 x 1079   

try cosmic neu number: N (@ 1.0 x 1012 galaxies) 6.0 x 1079

cosmic mass: (@ 5.0 x 1011 average galaxies) 5.0 x 1052 kg
cosmic volume: (@ maximum spinrise density solid ball) 7.47 x 1034 m3
cosmic radius: (@ maximum spinrise density solid ball) 2.61 x 1011 m
cosmic volume: (@ 63.5 % of maximum spinrise density N cellular ball) 11.7 x 1034 m3
cosmic radius: (@ 63.5 % of maximum spinrise density N cellular ball) 3.03 x 1011 m
cosmic density: as observed (volume of space / amu) 4.0 m3 [3]
cosmic n-e ratio: 0.133:0.867 (92.1 % hydrogen, 7.8 % helium, 0.1 % other)[4]

average zomon rise energy: (@ 2/3 0.000 833 neu) in Joules 8.40 x 10-14 J
average zomon rise energy: (@ 2/3 0.000 833 neu) in MeV 0.52 MeV
average zomon mass equivalence: (@ 2/3 0.000 833 neu) 9.34 x 10-31 kg
average zomon volume: (@ 4.0 m3 / 0.867) 4.6 m3
average space/motion rise energy density: (@ 0.000 833 neu/4.6 m3) ~0.17 MeV/m3
average zomon closure surface area: 13.37 m2
average zomon diameter: 2.06 m
average zomon radius: 1.03 m
average zomon g-rise: (Gm/r2) 5.87 x 10-41 m/s2
average zomon lifetime: til background 3.0 x 10-9 s
average zome rise energy density: in Joules 1.82 x 10-14 J/m3
average zome rise energy density: in MeV 0.11 MeV/m3
average zome mass equivalence density: 2.03 x 10-31 kg/m3
zome g-rise: (Gm/r2) ~3.2 x 10-11 m/s2

NT cosmic volume: (0.867 x 3.0 x 1079 x 4.6 m3) 1.196 x 1080 m3
NT cosmic radius: in meters 3.2 x 1026 m
NT cosmic radius: in light years 33.8 x 109 ly

Big Bang cosmic radius: in light years 13.7 x 109 ly
Big Bang cosmic radius: in meters 1.29 x 1026 m
Big Bang cosmic volume: 9.1 x 1078 m3
Big Bang cosmic neu number: N estimate (9.1 x 1078 m3 / 4.6 m3) 1.98 x 1078

Atomic Quantities

Neutron (n0)

neutron total mass: (1.000 000 neu) 1.674 929 351 x 10-27 kg[1]
neutron core mass: (0.998 623 neu = to proton) 1.672 631 x 10-27 kg
neutron core diameter: (= to proton) 1.68368 x 10-15 m
neutron core circumference: (= to proton) 5.289 437 x 10-15 m
neutron core volume: (= to proton) 2.499 063 x 10-45 m3
neutron core density: (= to proton) 6.693 034 x 1017 kg/m3
neutron core surface area: (= to proton) 8.905 718 x 10-30 m2
neutron membrane mass: (0. 000 544 neu = to electron) 9.109 382 x 10−31 kg
neutron membrane volume: (= to electron) 0.001 36 x 10-45 m3
neutron membrane density: (= to electron) 6.693 034 x 1017 kg/m3
neutron membrane thickness: (varies w/ nuclide)
neutron plasm mass: (0. 000 833 neu) 13.952 161 x 10-31 kg
neutron plasm volume: (varies w/ nuclide)
neutron plasm density: (varies w/ nuclide)
neutron minimum volume: (theoretical @ maximum spinrise density) 2.502 50 x 10-45 m3
neutron minimum volume: S3 surface area (4πr2) 8.913 760 x 10-30 m2
neutron cross section diameter: (2r)(theoretical @ min volume) 1.68444 x 10-15 m
neutron cross section area: (πr2)(theoretical @ min volume) 0.022 284 x 10-28 m2
R1 radius @ core S1 surface: (0.998 623 neu volume @ max density) 0.84184 x 10-15 m
R2 radius @ membrane S2 surface: (0.999 456 neu volume @ max density) 0.84207 x 10-15 m
R3 radius @ membrane S3 surface: (1.000 000 neu volume @ max density) 0.84222 x 10-15 m
neutron membrane shell thickness: (R3-R2, maximum) 15.0 x 10-20 m
neutron membrane shell thickness: (ultra-cold 1000A) 1.0 x 10-35 m
neutron plasm volume: (calculated @ maximum spinrise density) 2.08458 x 10-48 m3
neutron plasm shell thickness: (R2-R1, minimum) 23.0 x 10-20 m
neutron core, time of one spin: (2πr/c) 1.764 366 x 10-23 s
neutron spins per second: (qs) 5.667 758 x 1022
neutron magnetic moment: (-1.000 000 neu magneton) -0.966 236 47 x 10-26 J T-1[1]
neutron dipole length: (2r)(theoretical @ min volume) 1.68444 x 10-15 m

Proton (p+)

proton mass: (0.998 623 neu) 1.672 631 777 x 10-27 kg[1]
proton charge shell radius R1: (note: smaller value than NIST) 0.84184 x 10-15 m[2]
proton charge shell energy: (0.000 833 /2 x 939.565 379 MeV) 0.391 328 x 106 eV
proton charge shell volume: (calculated @ maximum spinrise density) 1.04229 x 10-48 m3
proton charge shell density: 3.754 502 x 1053 eV/m3
proton charge shell thickness: (calculated @ maximum spinrise density) 11.5 x 10-20 m
proton cross section diameter: (2r) 1.68368 x 10-15 m
proton circumference: (2πr) 5.28943 x 10-15 m
proton cross section area: (πr2) 0.022 264 x 10-28 m2
proton S1 surface area: (4πr2) 8.905 718 x 10-30 m2
proton volume: (4/3πr3) 2.499 063 x 10-45 m3
proton density: (fixed maximum (absolute) spinrise density constant) 6.693 034 x 1017 kg/m3
proton specific volume: (maximum density spinrise volume per kg) 1.494 090 x 10-18 m3/kg
proton core time of one spin: (2πr/c) 1.764 366 x 10-23 s
proton spins per second: 5.667 758 x 1022
proton magnetic moment: (+1.459 898 neu magneton) 1.410 606 743 x 10-26 J T-1[1]
proton dipole length: (2r)(0.999 548 neu dipole) 1.68368 x 10-15 m
proton g-rise: ~1.57x-7 m/s2

Electron (e-)

electron mass: (0. 000 544 neu) 9.109 382 91 x 10−31 kg[1]
electron volume: (theoretical @ fixed spinrise density) 0.001 36 x 10-45 m3
electron charge shell radius: (r) (calculated R2-R3 @ center) 0.06875 x 10-15 m
electron charge shell energy: (0.000 833 /2 x 939.565 379 MeV) 0.391 328 x 106 eV
electron charge shell volume: (calculated @ maximum spinrise density) 1.04229 x 10-48 m3
electron charge shell density: 3.754 502 x 1053 eV/m3
electron charge shell thickness: (calculated @ maximum spinrise density) 1,435 x 10-20 m
electron shell thickness: (r) (= charge radius) 0.06875 x 10-15 m
electron cross section diameter: (2r) 0.137 507 x 10-15 m
electron circumference: (2πr) 0.431 991 x 10-15 m
electron cross section area: (πr2) 0.000 148 x 10-28 m2
electron S2 surface area: (4πr2) 0.059 401 x 10-30 m2
electron S3 surface area and closure volume: (very small)
electron time of one spin: (2πr/c) 1.440 967 x 10-24 s
electron spins per second: 6.939 785 x 1023
electron magnetic moment: (-960.920 498 neu) -928.476 430 x 10-26 J T-1
electron dipole length: (2r)(0.081 633 neu dipole) 0.137 507 x 10-15 m
electron g-rise: ~0.13×10-7 m/s2

Deuteron (H2) (considered as a sphere)

deuteron mass: (1.996 255 neu) 3.343 583 48 x 10-27 kg[1]
deuteron charge radius: (r) 2.1424 x 10-15 m[1]
deuteron cross section diameter: (2r) 4.2848 x 10-15 m
deuteron circumference: (2πr) 13.4610 x 10-15 m
deuteron cross section area: (πr2) 0.1441 x 10-28 m2
deuteron surface area: (4πr2) 57.6781 x 10-30 m2
deuteron total volume: (4/3πr3) 41.189 x 10-45 m3
deuteron average density: 0.8117 x 1017 kg/m3
deuteron 1 charge shell thickness: (calculated @ maximum spinrise density) 1.78 x 10-20 m
nucleonic total fixed spinrise volume: (1.996 255 – 0.000 833 = 1.995 422 neu) 4.993 x 10-45 m3
nucleonic neutron core volume: (1 @ 0.998 623 neu) 2.499 x 10-45 m3
nucleonic proton core volume: (1 @ 0.996 255 neu) 2.493 x 10-45 m3
nucleonic membrane volume: (1 @ 0.000 544 neu) 0.001 x 10-45 m3
nucleonic membrane thickness: 2.32 x 10-20 m
nucleonic plasm mass: (1 @ 0. 000 833 neu) 1.395 06 x10-30 kg
nucleonic plasm volume: (total – fixed spinrise) 36.196 x 10-45 m3
nucleonic plasm density: 3.761 x 1013 kg/m3
deuteron magnetic moment: (+0.448 206 neu, 1.16 % less than n+p) 0.433 073 489 x 10-26 J T-1[1]
deuteron g-rise: ~0.49×10-7 m/s2

Helion (He3)

helion mass: (2.989 033 neu) 5.006 412 34 x 10-27 kg[1]
helion charge radius: (r) 1.9642 x 10-15 m
helion cross section diameter: (2r) 3.9284 x 10-15 m
helion circumference: (2πr) 12.341 x 10-15 m
helion cross section area: (πr2) 0.1212 x 10-28 m2
helion surface area: (4πr2) 48.482 x 10-30 m2
helion total volume: (4/3πr3) 3.1742 x 10-44 m3
helion average density: 1.5772 x 1017 kg/m3
helion 2 charge shell thickness: (calculated @ maximum spinrise density) 4.22 x 10-20 m
nucleonic total fixed spinrise volume: (2.989 033 – 0.001 666 = 2.987 367 neu) 0.7475 x 10-44 m3
nucleonic neutron core volume: (1 @ 0.998 623 neu) 0.2499 x 10-44 m3
nucleonic proton core volume: (2 @ 0.994 514 = 1.989 033 neu) 0.4977 x 10-44 m3
nucleonic membrane volume: (1 @ 0.000 544 neu) 0.0001 x 10-44 m3
nucleonic membrane thickness: 2.76 x 10-20 m
nucleonic plasm mass: (1 @ 0. 000 833 neu) 1.395 06 x10-30 kg
nucleonic plasm volume: (total – fixed spinrise) 2.4264 x 10-44 m3
nucleonic plasm density: 5.749 x 1013 kg/m3
helion magnetic moment: (-1.112 168 neu) -1.074 617 486 x 10-26 J T-1
helion g-rise: ~0.87×10-7 m/s2

Triton (H3)

triton mass: (2.989 596 neu) 5.007 356 30 x 10-27 kg[1]
triton charge radius: (r) 1.755 x 10-15 m
triton cross section diameter: (2r) 3.510 x 10-15 m
triton circumference: (2πr) 11.026 x 10-15 m
triton cross section area: (πr2) 0.0967 x 10-28 m2
triton surface area: (4πr2) 38.704 x 10-30 m2
triton total volume: (4/3πr3) 2.2642 x 10-44 m3
triton average density: 2.2115 x 1017 kg/m3
triton 1 charge shell thickness: (calculated @ maximum spinrise density) 2.63 x 10-20 m
nucleonic total fixed spinrise volume: (2.989 596 – 0.001 666 = 2.987 930 neu) 0.7477 x 10-44 m3
nucleonic neutron core volume: (2 @ 0,998 623 = 1.997 246 neu) 0.4998 x 10-44 m3
nucleonic proton core volume: (1 @ 0 .991 258 neu) 0.2480 x 10-44 m3
nucleonic membranes volume: (2 @ 0.000 544 = 0.001 088 neu) 0.0002 x 10-44 m3
deuteron membrane thickness: 5.10 x 10-20 m
neutron membrane thickness: 5.89 x 10-20 m
nucleonic plasm mass: (2 @ 0.000 833 = 0. 001 666 neu) 2.790 12 x10-30 kg
nucleonic plasm volume: (total – fixed spinrise) 1.5165 x 10-44 m3
nucleonic plasm density: 18.398 x 1013 kg/m3
triton magnetic moment: (1.557 185 neu) 1.504 609 447 x 10-26 J T-1[1]
triton g-rise: ~1.08×10-7 m/s2

Alpha (He4) (considered as sphere without hills)

alpha mass: (3.967 127 neu) 6.644 656 75 x 10-27 kg[1]
alpha charge radius: (r) 1.681 x 10-15 m
alpha cross section diameter: (2r) 3.362 x 10-15 m
alpha circumference: (2πr) 10.562 x 10-15 m
alpha cross section area: (πr2) 0.0887 x 10-28 m2
alpha surface area: (4πr2) 35.509 x 10-30 m2
alpha total volume: (4/3πr3) 1.9897 x 10-44 m3
alpha average density: 3.3394 x 1017 kg/m3
alpha 2 charge shell thickness: (calculated @ maximum spinrise density) 5.77 x 10-20 m
nucleonic total fixed spinrise volume: (3.967 127 – 0.001 666 = 3.965 461 neu) 0.9923 x 10-44 m3
nucleonic neutron core volume: (2 @ 0.998 623 = 1.997 246 neu) 0.4998 x 10-44 m3
nucleonic membrane thickness: 5.98 x 10-20 m
nucleonic proton core volume: (2 @ 0.983 564 = 1.967 127 neu) 0.4922 x 10-44 m3
nucleonic membrane volume: (2 @ 0.000 544 = 0.001 088 neu) 0.0002 x 10-44 m3
nucleonic plasm mass: (2 @ 0.000 833 = 0. 001 666 neu) 2.790 12 x10-30 kg
nucleonic plasm volume: (total – fixed spinrise) 0.9973 x 10-44 m3
nucleonic plasm density: 27.975 x 1013 kg/m3
alpha magnetic moment: (+0.448 206) + (-0.448 206) neu) [none]
alpha g-rise: ~1.57×10-7 m/s2