NEU Theory

NEU Theory

The Nature of Physical Reality

Distribution & Movement of Matter & Energy in the Universe

The Cosmic Model

The model describes and calculates, the physical shape, size, substance, and density of the universe, by counting the distribution of the two quantum states of the invariant number N. An integer value for N is required, and must be provided. The value of one integer is the neu.

The quantum states can only add, and it is the method by which they add together into collections, that gives the cosmos the physical structure and scale that we observe.

The Identity of N

How large is N? What is the cosmic population? The model requires we provide a number.

We can only estimate N through our astronomical observations, which describe the cosmos as a large scale “cosmic web” structure of galaxies. As far as we can see, in any direction, there are only galaxies and space, with no “end” or “bottom” in sight. The galaxies come in all shapes and sizes, and there are perhaps 500 billion of them within our observation limits. There are dwarf galaxies with only a few thousand stars to super giants with trillions of stars.

By estimating an average of 50 billion stars per galaxy, and using the solar neu mass number of 1.1875 x 1057, the average galaxy has a neu mass number of approximately 6.0 x 1067. This provides 3.0 x 1079 as a minimum value for N. This number is used as the value of N for the model. If the cosmic number is changed, the calculated values will correspondingly adjust.

The universe contains matter in the form of gas and dust between galaxies. The matter in the inter galactic medium (IGM), may be equal to, or more, than the matter contained by the stars, gas and dust of the galaxy itself, which would increase the minimum value of N. However, in our model, we will use 3.0 x 1079 as a starting value and see where it leads.

Space is also filled with an isotropic shower of cosmic rays, speedy bullets of fully ionized nuclei – mainly protons and alphas – but also containing a spectrum of the heavier nuclides. These add to the value of N.

The Average Distribution of Matter

The average distribution of matter, is the total volume of the universe, divided by the cosmic number N, made from approximately 500 billion galaxies.

If the universe is considered homogenous on a large enough scale, than equal volumes of space at that scale, will contain an equal fraction of N. If we can count and estimate the amount of matter within that volume, than we can estimate the amount of space attributable to one neu.

NASA has published on their website, that based on astronomical observations, the average distribution of matter in the universe is one atom per four cubic meters of space. Neu Theory uses this volume, as a starting value in its calculations, meaning one (1) neu number is initially attributed 4.0 cubic meters of space (zome). However, it is speculated, that this value may be too low, meaning there may actually be a much larger volume of space per atom.

The relative abundance of the atoms in the universe as observed (Table 3), indicates that the charge/zome ratio  is approximately 0.87N. In the Neu Theory model, this means that only the electric 87% of N (b-state) contributes to space, the neutral 13% of N (a-state) displaces space, but does not contribute to it.

Each quantum of space (one zomon) must provide 4.6 cubic meters to make the universal average equal to 4.0 cubic meters. The average volume of a zomon in the model is initially set at 4.6 cubic meters of space.

The average energy of a zomon, is set equal to the average “missing mass” energy of beta decay approximately 2/3 of 0.000833 neu of free rise movement/energy, approximately equal to 0.524 meV (9.34 x 10-31 kg equivalent mass). The zomon in Neu Theory carries the energy attributed by current science to the neutrino.

The Relative Abundance of Atoms

The Neu Theory Model uses the observed distribution of atoms in nature, to calculate the neutral/electric ratio of N. If the atomic distribution ratios change, the model values will need to be correspondingly adjusted and the results will be different. See Table 3.

Table 3 – Relative Abundance of Atoms
%
mass
%
atoms
Isotope Abundance
[milky way galaxy stellar distribution as observed and assumed typical] (isotope %)
  p
proton
(b)
 D
deuteron
(ab)
 n
neutron (a)
# atoms per million atomsneutral
#
electric
#
# atoms per million neus total
(b) # per million neus
total
(ab) # per million neus
total
(a) # per million neus
73.4892.1Hydrogen-1 (b) (99.9885 %)100920,8940920,894735,431735,43100
   Hydrogen-2 (ab) (0.0115 %) 0 1 0106  106  106  85 085 0
   Helium-3 (abb) (0.000137 %) 0 0 0 (0.107) (1) (2) (0.107) 0 0 0
 24.89 7.8 Helium-4 (2ab) (99.999863 %) 0 2 0 78,000 156,000 156,000 62,291 0 124,582 0
0.78 0.061Oxygen-16 (8ab)
(99.76 %)
08 0 610 4,080 4,080 487 0 3,8960
0.29 0.030Carbon-12 (6ab)
(98.93 %)
0  60300 1,800 1,800 24001,440 0
 0.18 0.004Iron-56 (26ab+4a)
(91.75 %)
026 4401,200 1,040 320 832 128
 0.13 0.008 Neon-20 (10ab)
(90.48 %)
010 080 800 800 6406400
0.090.008Nitrogen-14 (7ab)
(99.63 %)
 07 0 80 560 560 6404480
0.070.003Silicone-28 (14ab)
(92.23 %)
 014 030 420 42024 0 3360
0.040.002Magnesium-24 (12ab)
(78.99 %)
0 1202024024016 0192 0
 0.03 0.001Argon-40 (18ab+4a)
(99.60 %)
018410220180 8 014432
 0.030.001Sulfur-32 (16ab)
(94.93 %)
 016 0 10160160 8 01280
 0.01 0.0002Nickel-58 (28ab+2a)
(68.08 %)
 0 282 2605620 56 4
< 0.01< 0.0001all other isotopes [est. mass # ∼ 200] 080401 120801 0 80 40
100.03 TOTALS
   1,000,183
165,7661,086,416
798,753
735,431132,859204
      1,252,182neus per 1,000,183 atoms
13.24 % neutral # 0.1324 N86.76 % electric # 0.8676 N
798,753 atoms per million neus
   
   * includes < 1 atom of He-3 (abb)      868,494* topological states
84.68 % b15.30 %
ab
0.02%
a

     

 The cosmic abundance of the elements is based on the observed relative abundance of atoms in the Milky Way Galaxy. The values used in this work, are based on values published in “A Dictionary of Astronomy”, Oxford University Press, 1997. Other sources, e.g., Wikipedia, may have somewhat different values, but they are very close to these. These observed values are used as the cosmic average for other galaxies. However other galaxies may have different ratios, based on where they are in their recycling period. A galaxy’s recycling period is measured as the average time between AGN emissions.

The longer the time between AGN emissions, the more time stellar processes in a galaxy have to make heavier atoms with more neutrons in the nuclide, thus changing the neutral/electric ratio. This only impacts a small amount (less than 1 %) of the atoms in a galaxy. The hydrogen-helium quantities are assumed to typically remain more than 99 % of all atoms in a galaxy.

Universal Distribution of Topological States per 1,000,000 (1,001,353) neu number

 State Name Unit Value # of Objects Neu Value Neutral # Electric # % Total
 aFree Neutrons (n)1(unstable)    
 Nuclide Neutrons (n) 1 204 2042040 0.02
 b Free Protons (p) 1 735,431735,431 0 735,431 84.68
 ab Free Deuterons (D) 2 85 170 85 85 
2abHe4 Deuterons (D) 2 124,582249,164 124,582 124,582 15.30*
  All other Deuterons (D) 28,19216,384 8,192 8,192 
 abbFree Helions (He3) 3(0.1) (0.3)(0.1) (0.2) 
 Totals   868,494 1,001,353 133,063868,290 
* includes all deuterons
 

Universal De-Linkage of Matter

Matter FormPhysical State
(fraction of N)
Matter to Energy
(fraction of N)

Delinked Matter

(fraction of N)

neutral a-state0.1329 N(1.0 neu mass, no  mass reduction  allowed)0.0
   – deuteron neutrons0.1327 N(1.0 neu mass, no  mass reduction allowed)0.0
   – neutron neucleons0.0002 N(1.0 neu mass, no  mass reduction allowed)0.0
   – helion neutrons0.0000001 N(1.0 neu mass, no  mass reduction allowed)0.0
  – free neutrons (unstable)(1.0 neu mass, no  mass reduction allowed)0.0
electric b-state0.8671 N(0.000833 neu mass x 0.8671, plasm energy)0.000 722
 total electrons0.8671 N(0.000544 neu mass, no mass reduction allowed)0.0
  total protons0.8671 N(0.998623 neu mass, future source of all matter to energy de-linkage) 
   – free hydrogen0.7344 N(0.0 % reduction in proton neu mass)0.0
   – deuteron protons0.000085 N(0.002368 neu mass reduction per proton)0.000 000 2
   – helion protons0.0000002 N(0.004107 neu mass reduction per proton)0.000 000 001
   – alpha protons0.1244 N(0.015059 neu mass reduction per proton) 0.001 873
   – other nuclide protons0.0082(est: 0.017000 neu mass reduction per proton) 0.000 139
 Totals Universal neu matter de-linked into energy 0.002 734

 0.27 % of matter has de-linked into energy, 99.73 % of the universe remains as matter

The Universal Distribution of Fundamental Forms

FormDescriptionNeu Value Fraction of N
[1]Cores  
 – free neutrons (a)1.000000 (unstable)
 – nuclide neutrons (a)1.000000 0.0002
  – free protons (b)0.998623 0.7344
 – free deuterons (ab)1.966799 0.00017
 – nuclide deuterons (ab)(varies) 0.2652
 – free helions (abb)2.990121 0.0000003
 [2]Membranes  
 – free electrons 0.000544 0.8671
 neucleonic 0.000544 0.1329
 [3]Plasms  
 – de-linked plasms* 0.000833 0.8671
 neucleon plasms 0.000833 0.1329
 [6]Charge Shells  
 negative electron [6-](-0.000833/2 spin) 0.8671
 positive proton (6+)(+0.000833/2 spin) 0.7344
 – positive neucleonic (6+)(+0.000833/2 spin) 0.1327
 [8]Zomons  
 – zomons(∼0.000556 rise)0.8671

*de-linked plasm energy, includes electricity [6][7][10], space [8], motion [9], & light [11]

Universal Distribution of De-Linked Energy

(n = 938.271 597 meV spin + 938.271 597 meV rise)

 Energy Form Fraction of NValue @ N = 3.0×1079 nDensity
 Spin Energy 0.002734 total7.69×1079 meV 
 – charge shells 0.0007222.03×1079 meV3.91×1053 eV/m3
 – light (atomic)* (included)* (included)*(as observed)
 – light from core mass 0.0020125.66×1079 meV 
 Rise Energy 0.002734 total7.69×1079 meV 
– space (avg 2/3)0.0004841.36×1079 meV113,043 eV/m3
– motion (avg 1/3)0.0002380.67×1079 meV 
– motion from core mass0.0020125.66×1079 meV 

* atomic light energy comes from the reduction in potential energy of the electric fields [7]

The n Value of Common Objects

 Object n Value
 Neutron 1
 Hydrogen-1 0.999167
 Atoms (hydrogen-uranium) 1 – 238
 Molecules 2 – 5000
 1 kilogram platinum/iridium artifact (∼0.597 xenna neu) ∼5.970 401 076 x 1026
 Human (70 kg) 4.18 x 1028
 Smallest naturally rounded solar body (Rhea 2.3×1021 kg) 1.37 x 1048
 Moon (7.35×1022 kg) 4.39 x 1049
 Earth (the local 1 g-rise/spinfield hollow theater) 3.57 x 1051
 Jupiter (317 earth number) 1.13 x 1054
 Smallest deuteron burning star (brown dwarf, ~4,000 earth number) 1.47 x 1055
 Smallest helium burning star (red dwarf, ~25,000 earth number) 9.0 x 1055
 Sun (the local helium burning stellar furnace, ~330,000 earth number) 1.19 x 1057
 Smallest electric supercell core (stellar black hole, ~3 solar number) 3.56 x 1057
 Milky Way electric supercell core (central black hole, ~4.1 million solar number) 4.87 x 1063
 Milky Way Galaxy (the local 300 billion star matter/energy cycle) 2.4 x 1068
 Cosmic Whole (the universal open hollow with 500 billion embedded galaxies) 3.0 x 1079

The Large Scale Motion of Matter

There are five large scale motions of matter in the universal open hollow.

  1. The g-rise acceleration of space acts in the opposite direction to the g-rise acceleration of matter providing a cosmic pressure that pushes and keeps matter together into galaxies and clusters of galaxies. It is hypothesized that the large “voids” or hollows of space observed by astronomers, some millions of light years in diameter, are a natural result of these opposing forces of nature. The galaxy cores of the cosmic web periodically produce fresh bursts of space away from matter, and this expanding (and diffusing) space, over time, builds and maintains the large hollow volumes of space, which in turn pressure the galaxies clusters around their perimeter and a long term balance is maintained.
  2. The isotropic shower of “cosmic rays” that fill the universal open-hollow. The “rays” are bullets of fully ionized nuclides traveling through space at speeds approaching light. It is hypothesized by Neu Theory that the charged nucli are accelerated by the g-rise acceleration of space. The long term effect is towards cosmic homogeneity in the distribution of matter.
  3. The random motion between galaxies bound in galaxy clusters. Galaxies can be visualized, as a bound gas of n spinfield hollows, within a large volume of space. Similar to the random movement of molecules in a gas, but on a far larger physical scale, the galaxies have an average speed of motion based on the total g-rise of the mass in the cluster.The cosmic g-rise floor acceleration of universal matter as a whole adds a constant acceleration to the random linear motion of each galaxy. This is hypothesized as the cause of the “larger than expected” velocities that are observed, not an unknown form of “dark matter”. The kinetic energy of all the galaxies is contained within the cluster volume, meaning, galaxies do not leave the cluster. It is a form of “in-place” motion that is maintained with time. The random motion does allow the galaxies within a cluster to physically interact with each other.
  4. The orbital motion of matter bound in spinfields and hyper spinfields with a cosmic g-spin floor acceleration.
  5. The atomic matter/energy cycle process within a galaxy. The AGN cycle.

The Large Scale Movement of Energy

There are four large scale movements of energy in the universal open hollow.

  1. The universal one-way isotropic expansion and diffusion-in-place by the absolute free rise movement/energy of space.
  2. Local AGN “little bangs”, at a rate sufficient to replenish the diffusion-in-place by space, thus maintaining a stable universal volume.
  3. The radiation spectrum. The isotropic flux of radiant spin energy photon bubbles from atomic and nuclear sources, that are bosonically carried by space. Neu Theory does not use the term electromagnetic with light energy.
  4. The kinetic rise energy carried by cosmic rays.